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Abstract}The vascular endothelium is strategically located between the circulating blood and the vascular smooth muscle
cells. Different agonists or stimuli transported by the circulating blood can trigger the endothelium to release potent relaxing
(nitric oxide, prostacyclin, endothelium-derived hyperpolarizing factor) or contracting factors (endothelin, cycloxygenase
products). These endothelium-derived vasoactive factors can modulate blood flow locally. Heterogeneity exists from one
vascular bed to the other, or even between vessels, in the agonists able to stimulate the release of endothelium-derived
vasoactive factors. In the ophthalmic circulation, nitric oxide and endothelin are strong vasoactive modulators. In many
vascular diseases that are of importance in ophthalmology (hypercholesterolemia, arteriosclerosis, hypertension, diabetes,
vasospastic syndrome, ischemia and reperfusion, etc) the function of the endothelium can be impaired. There exist different
drugs that can modulate the vasoactive function of the vascular endothelium. In other words, it appears that the vascular
endothelium plays an important role in both the physiology and pathophysiology of the regulation of blood flow. The
modulation of this regulatory system by different drugs might open new therapeutical approaches to treat vascular disorders
in ophthalmology. # 2001 Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

The endothelium consists of a monolayer of cells
lining the inner wall of the vasculature. Endothelial
cells are startegically located between the circulat-
ing blood and the vascular smooth muscle cells. It
long had been known that the endothelium
regulates permeability (Shepherd and Vanhoutte,
1979), but more recently it has been recognized that
it also exerts metabolic functions by activating and
inactivating hormones (Dzau, 1986; Lüscher and
Vanhoutte, 1990; Ng and Vane, 1967). Further-
more, endothelial cells strongly affect coagulation,
platelet function, and fibrinolysis (Chesterman,
1988; Moncada et al., 1977; Radomski et al.,
1987a,b). In addition, vasoactive substances that
either inhibit (i.e. endothelium-derived relaxing
factors: EDRF) or activate (i.e. endothelium-
derived contracting factors: EDCF) the underlying
smooth muscle cells can also be released by
endothelial cells (Furchgott and Zawadzki, 1980;
Lüscher and Vanhoutte, 1990; Miller and Van-
houtte, 1983; Moncada and Vane, 1978; Vanhoutte
et al., 1986; Yanagisawa et al., 1988a,b). The
present review briefly updates (Haefliger et al.,
1994a) and summarizes some of the current knowl-
edge about endothelium-derived vasoactive sub-
stances with a special emphasis to the ophthalmic
circulation (Fig. 1).

2. ENDOTHELIUM-DERIVED RELAXING
FACTORS

2.1. L-arginine/nitric oxide pathway

Nitric oxide (NO), which has a very short half-
life, is a powerful endothelium-derived vasodilator
as well as an inhibitor of platelet function (Busse

et al., 1987; Furchgott, 1988; Ignarro et al., 1986;
Moncada et al., 1991; Palmer et al., 1987;
Radomski et al., 1987a,b). Nitric oxide is formed
from the amino acid, L-arginine, into the amino
acid, L-citrulline, by the enzyme nitric oxide
synthase (NOS) (Moncada et al., 1991) (Fig. 2).
There are two major NOS isoforms, one of them is
Ca2+- and calmodulin-dependent, while the other
one is Ca2+- and calmodulin-independent (Bredt
and Snyder, 1990; Palmer et al., 1988a,b, 1987;
Palmer and Moncada, 1989; Moncada, 1992;
Moncada et al., 1991; Nathan, 1992). The Ca2+-
calmodulin-dependent isoform is constitutive and
has a widespread tissue distribution in endothe-
lial cells (NOS III or eNOS) as well as in some
non-adrenergic-non-cholinergic nerves (NOS I
or nNOS). The Ca2+-calmodulin-independent iso-
form (NOS II or iNOS), which is usually not
expressed in normal conditions, is inducible after
stimulation by different factors (i.e. endotoxin,
tumor necrosing factor, interleukin-1, etc.) (Mon-
cada et al., 1991).

In endothelial cells, NO can be released in
response to platelet-derived products (adenosine
diphosphate, serotonin, thrombin, etc.), hor-
mones, and autacoids (acetylcholine, bradykinin,
histamine, noradrenaline, substance P, and vaso-
pressin, etc.) (Cohen et al., 1983a,b; De Mey and
Vanhoutte, 1985; Houston et al., 1985, Cocks and
Angus, 1983; Cocks et al., 1985; Katusic et al.,
1984; Van de Voorde and Leusen, 1983; Zawadzki
et al., 1981). Mechanical forces, such as shear
stress, can also stimulate the release of NO, which
mediates flow-dependent vasodilation in vivo
(Pohl et al., 1986; Rubanyi et al., 1986).

In vascular smooth muscle cells and in pericytes,
NO binds to the iron of the hemic structure of
soluble guanylate cyclase, and stimulates the
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Fig. 1. Schematic diagram of endothelium-derived vasoactive substances released by the endothelium after activation of
specific receptors (open circles) or by physical forces. After activation, the endothelium can either produce endothelium-
dependent relaxing factors (EDRF), such as nitric oxide (NO), prostacyclin (PGI2), or the endothelium-derived
hyperpolarizing factor (EDHF). The endothelium can also release endothelium-derived contracting factors (EDCF) such as
endothelin-1, angiotensin II (A II), thromboxane A2 (TXA2), prostaglandin H2 (PGH2) or the superoxide anion radical (O!

2 ).
Bradykinin (Bk), serotonin=5-hydroxytryptamine (5-HT), arachidonic acid (AA), acetylcholine (Ach), transforming growth
factor b (TGFb1), angiotensin I (A I), big-endothelin (big-ET), angiotensin converting enzyme (ACE), endothelin converting

enzyme (ECE), nitric oxide synthase (NOS), 3050-cyclic adenyl cyclase (cAMP), 3050-cyclic guanylate cyclase (cGMP).

Fig. 2. Schematic representation of the nitric oxide synthase/guanylate cyclase pathway in a blood vessel wall. In endothelial
cells nitric oxide (NO) is synthesised from L-arginine via the activation of a calcium (Ca2+)-dependent nitric oxide synthase
(NOS). NO production can be inhibited by false L-arginine analogs, such as L-NG-monomethyl arginine (L-NAME). In
vascular smooth muscle cells, NO activates a soluble guanylate cyclase (sGC), which increases 3050-cyclic guanylate cyclase
(cGMP) leading eventually to a relaxation. Receptor-operated agonists (R), such as acetylcholine (Ach) can stimulate the

production of NO.
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formation of cyclic guanosine 30, 50-monopho-
sphate (cGMP) (Busse et al., 1987; Radomski
et al., 1987a,b; Rapoport et al., 1983; Haefliger
et al., 1994a,b). In these cells, the increase in
intracellular cGMP concentration leads to a
relaxation via a decrease in intracellular Ca2+

(most likely by increasing Ca2+ efflux and re-
uptake into intracellular stores) and dephosphor-
ylation of myosin light chains (Lüscher and
Vanhoutte, 1990) (Fig. 2).

The production of NO can be inhibited by
synthetic analogs of L-arginine (L-NG-mono-
methyl-arginine: L-NMMA; nitro-L-arginine
methyl ester: L-NNA) (Palmer et al., 1988a,b),
whereas methyl- and dimethylarginines circulate in
plasma as endogenous inhibitors of NO (Vallance
et al., 1992). Furthermore, hemoglobin and oxy-
gen-derived free radicals inactivate NO (Grygle-
wski et al., 1986; Moncada et al., 1986; Rubanyi
et al., 1985; Rubanyi and Vanhoutte, 1986).

2.2. Prostacyclin

In addition to NO, endothelial cells produce
prostacyclin (PGI2, ecoprostenol). Prostacyclin is
a major metabolite from arachidonic acid via the
activation of the enzyme cyclooxygenase (Chester-
man, 1988). Prostacyclin is a potent inhibitor of
platelet aggregation (Moncada et al., 1976; Mon-
cada and Vane, 1978) as well as a vasodilatator
(Lüscher and Vanhoutte, 1990; Moncada et al.,
1977). It activates adenylcyclase and increases the
intracellular production of cyclic adenosine 30,50-
monophosphate (cAMP) (Fig. 1). Hence, at sites
where platelets and/or the coagulation cascade are
activated, the endothelium releases vasodilators
and platelet inhibitors, such as NO, prostacyclin,
and tissue plasminogen activator, which provide
local protection against vasospasm, ischemia, and
thrombus formation (Mombouli and Vanhoutte,
1999).

2.3. Endothelium-derived hyperpolarizing factor

A putative hyperpolarizing factor (EDHF)
(Feletou and Vanhoutte, 1988; Beny and Brunet,
1988) which increases the membrane potential of
vascular smooth muscle cells is also formed by the
endothelium (Fig. 1). EDHF could be the resultant

of an electrotonic conduction of the endothelial
cell hyperpolarization to the neighbouring smooth
muscle cells (Chaytor et al., 1998; Dora et al.,
1999; Yamamoto et al., 1999). In endothelial cells
exposed to shear stress a potassium-ion current
across the cell membrane can be activated (Olesen
et al., 1988). This flow-activated hyperpolarization
may be eletrotonically transfered to the smooth
muscle cells. Hence, flow-induced release of
endothelium-derived relaxing factors modulate
vascular tone of conduit and resistance arteries
(Griffith et al., 1987, 1988a,b). In some vessels,
EDHF could also be potassium ions released by
the endothelial cells (Edwards et al., 1998).
Depending upon the tissue, potassium ion would
hyperpolarize the smooth muscle cells either by
gating inward rectified potassium channels or by
activating the eletrogenic sodium-potassium AT-
Pase (Na–K ATPase), of both (Knot et al., 1996;
Edwards et al., 1998; Prior et al., 1998). The third
hypothesis concerning the identity of the EDHF is
that it is a product of the cytochrome P450 2C, an
epoxyeicosatrienoic acid (Fisslthaler et al., 1999).

The physiological role of EDHF is uncertain,
but it may contribute to endothelium-dependent
relaxation particularly with certain agonists, such
as bradykinin (Mombouli et al., 1996). The release
of EDRF from the endothelium can be mediated
by both pertussis toxin-sensitive (a2-adrenergic
activation, serotonin, thrombin, aggregating plate-
lets) and insensitive (adenosine diphosphate, bra-
dykinin) G-proteins. In blood vessels from animals
with regenerated endothelium, and/or athero-
sclerosis, there is a selective loss of the pertussis-
toxin sensitive mechanism of EDRF-release which
favors the occurrence of vasospasm, thrombosis
and cellular growth (Mombouli and Vanhoutte,
1999; Feletou and Vanhoutte, 1999).

3. ENDOTHELIUM-DERIVED
CONTRACTING FACTORS

3.1. Endothelin

Endothelial cells can produce the 21-amino-acid
peptide, endothelin (Dzau, 1986; Gillespie et al.,
1986; Hickey et al., 1985; Lüscher and Vanhoutte,
1990; Miller and Vanhoutte, 1983; Vanhoutte
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et al., 1986; Yanigasawa et al., 1988) (Fig. 1).
Three isoforms of the peptide exist: endothelin-1,
endothelin-2, and endothelin-3 (Masaki, 1989;
Yanagisawa et al., 1988a,b; Yanagisawa et al.,
1989), but endothelin-1 is the primary product of
the endothelium (Inoue et al., 1989). Each
endothelin isoform is a product of separate genes
that code for a precursor protein mRNA. En-
dothelin is generated from the precursors pre-
proendothelin and big-endothelin (Fig. 3). The
expression of mRNA and the release of the peptide
are stimulated by thrombin, transforming growth
factor b (TGF-b1), interleukin-1 (IL-1), epinephr-
ine, angiotensin II, arginine–vasopressin, calcium
ionophore, and phorbol esther (Boulanger and
Lüscher, 1990; Masaki, 1989; Yanagisawa et al.,
1988a,b, 1989).

Endothelin causes vasodilatation at lower con-
centrations and marked and sustained contrac-
tions at high concentrations (Kiowski et al., 1991;
Lippton et al., 1989; Lüscher and Vanhoutte, 1990;
Seo et al., 1994; Warner et al., 1989a,b; Wright and
Fozard, 1988). The dilatator response to endothe-
lin involves activation of endothelial receptors
(ETB-type) linked to NO and/or prostacyclin
release by endothelial cells (de Nucci et al., 1988;
Dohi and Lüscher, 1991; Rae et al., 1989; Sakurai

et al., 1990; Vane, 1990; Warner et al., 1989a,b).
The constrictive response involves the activation
by endothelin of specific membrane receptors (i.e.
ETA-, and ETB-receptors) on smooth muscle cells
(Arai et al., 1990; Sakurai et al., 1990; Vane, 1990).

In certain blood vessels, such as in porcine
coronary artery, endothelin receptors on vascular
smooth muscle cells are linked to voltage operated
Ca2+ channels via a Gi proteins (Goto et al.,
1989). This might explain why calcium antagonists
reduce endothelin-induced vasocontriction in these
vessels and are similary effective in human
coronary arteries (Godfraind et al., 1989). In other
vessels, such as the human internal mammary
artery, the contractile effects induced by endothe-
lin-1 are mediated by a cascade activation of
phospholipase C leading to the formation of
diacylglycerol and inositol triphosphate (Hirata
et al., 1988; Resink et al., 1989a). In turn, Ca2+ is
released from the sarcoplasmic reticulum leading
to an increase in intracellular Ca2+ concentrations
and the induction of long-lasting contractions
(Wallnöfer et al., 1989; Yanagisawa et al.,
1988a,b). At concentrations where endothelin-1
exerts no direct contractile effect, it potentiates
contractions to norepinephrine and serotonin
(Tabuchi et al., 1989; Yang et al., 1990a,b). The

Fig. 3. Schematic representation of the formation of the 21-amino acid (aa) peptide endothelin after cleavage from a
precursor.
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potentiating effects of endothelin are due to an
increased Ca2+ sensitivity of vascular smooth
muscle cells under the conditions described above
and therefore can be prevented by pretreatment
with calcium antagonists of the dihydropyridine
type (Yang et al., 1990a,b).

Under normal conditions the circulating en-
dothelin levels are low (1.5 pg/ml), suggesting that
it primarily acts as a local regulatory factor (Ando
et al., 1989; Hartter and Woloszczuk, 1989;
Koyama et al., 1989; Suzuki et al., 1989); the
peptide is cleared from the circulation by the
lungs, the kidneys, and the liver (Aenggard et al.,
1989; Neuser et al., 1989; Shiba et al., 1989).

3.2. Cyclooxygenase products

The endothelial cyclooxygenase pathway also
produces several contracting factors, such as
thromboxane A2, prostaglandin H2 or superoxide
anions, which are mainly produced in the cerebral
circulation and in the veins, under physiological
conditions (De Mey and Vanhoutte, 1985; Kim
et al., 1988a,b; Lüscher and Vanhoutte, 1990;
Vanhoutte et al., 1986) (Fig. 1).

4. NITRIC OXIDE, ENDOTHELIN AND THE
OPHTHALMIC CIRCULATION

4.1. Basal release of nitric oxide

In the ophthalmic vascular bed, there is a
constant basal release of NO, which maintains
the ophthalmic circulation in a constant state of
vasodilation. Indeed, in vitro, in isolated porcine
or human vessels and in the porcine perfused eye,
as well as, in vivo, in the miniature pig retinal
circulation or in the cat optic nerve head,
inhibitors of NO formation evoked vasoconstric-
tion and decrease in blood flow (Haefliger et al.,
1993, 1992; Meyer et al., 1993; Donati et al., 1995;
Buerk et al., 1996).

4.2. Stimulated release of nitric oxide

In human as well as in porcine ophthalmic and
ciliary arteries, and also in bovine retinal arteries,
different receptor mediated-agonists, such as bra-

dykinin, acetylcholine, and histamine, evoke en-
dothelium-dependent relaxations (Haefliger et al.,
1993; Schmetterer et al., 1997b; Haefliger et al.,
1992; Benedito et al., 1991; Hoste and Andries,
1991; Zhu et al., 1997). The responses to these
agonists are reduced by inhibitors of NO forma-
tion, such as L-NMMA or L-NAME, demonstrat-
ing that NO is the main mediator involved in these
relaxations (Fig. 4). In vitro, in porcine extrao-
cular vessels, the sensitivity to bradykinin increases
as the diameter of the vessels gets smaller,
suggesting that endothelium-dependent relaxation
is particularly important in small vessels and most
likely also in the microcirculation (Haefliger et al.,
1993). Furthermore, in these vessels a duality
exists, for a given agonist, when it activates
endothelial or vascular smooth muscle cells. For
example, as mentioned above, histamine by inter-
acting with an H1-histaminergic receptor evokes
an endothelium-dependent relaxation mediated by
NO, while, when histamine activates the same H1-
histaminergic receptor on smooth muscle cells, it
induces a contraction (Haefliger et al., 1992). This
explains why, in the presence of an endothelial
dysfunction, a given agonist, can induce in a vessel
a contraction instead of dilation (Haefliger et al.,
1994a,b).

Fig. 4. Endothelium-dependent relaxation evoked by
bradykinin in an isolated procine ciliary artery. In a
concentration-dependent manner, bradykinin induced a
relaxation of the vessel. This relaxation markedly inhib-
ited in presence of the inhibitor of NO formation
L-NAME and abolished in vessels with a non-functional

(W/o) endothelium.
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4.3. Endothelin-induced contractions

In isolated ophthalmic and ciliary arteries or in
bovine retinal arteries, endothelin-1 evokes potent
contractions (Haefliger et al., 1993, 1992; Nyborg
et al., 1991, White et al., 1996, Kulkarni et al.,
1994) (Fig. 5). In the perfused porcine eye,
endothelin-1 and endothelin-3 increase ophthalmic
flow at very low dosages and severely reduce it at
higher doses for prolonged periods of time. This
dual action of endothelin is best explained by the
activation of an endothelilal ETB-receptor that is
already activated at very low concentrations of
endothelin-1 and which evokes the endothelial
release of prostacyclin, while at higher concentra-
tions of endothelin-1, an ETA-receptor is predo-
minantly activated on vascular smooth muscle,
evoking potent contractions (Meyer et al., 1993).
This observation again underlines the importance
of the local endothelial-dependent regulation in
the ophthalmic circulation (Haefliger et al.,
1994a,b). Indeed, in human subjects, after systemic
injection of endothelin-1 (at doses that did not
affect systemic circulation), a reduction in the
pulsatile blood flow in the choroid and the optic
disc could be observed (Schmetterer et al., 1997a).

5. ENDOTHELIAL DYSFUNCTION IN
PATHOLOGICAL CONDITIONS

5.1. Hypercholesterolemia and arteriosclerosis

Endothelial cells represent a well-accessible
target for mechanical forces, for noxious sub-
stances, and for various cardiovascular risk
factors. In isolated vessels, low-density lipopro-
teins (LDLs), but not high-density lipoproteins
(HDLs), inhibit endothelium-dependent relaxation
to acetylcholine, serotonin, and aggregating plate-
lets (Andrews et al., 1987; Kugiyama et al., 1990;
Tanner et al., 1991). In porcine coronary artery,
endothelium-dependent relaxation is moderately
reduced in hyperlipidemia and markedly reduced
in arteriosclerosis (Cohen et al., 1988; Shimokawa
et al., 1987; Shimokawa and Vanhoutte, 1988,
1989). Hyperlipemia also reduces endothelium-
dependent relaxation in the microcirculation
(Bossaller et al., 1987; Drexler et al., 1989;
Förstermann et al., 1988; Ludmer et al., 1986;
Selke et al., 1990; Shimokawa and Vanhoutte,
1989, Shimokawa, 1999). Furthermore, oxidized-
LDL induces mRNA expression and release of
endothelin from human and porcine endothelium
(Boulanger et al., 1992). In the isolated porcine
ciliary artery, exposure to oxidized-LDL evokes
endothelium-dependent contractions that is inhib-
ited by the ETA-receptor antagonist BQ123 or
the inhibitor of protein synthesis cycloexamide,
indicating that Ox-LDL affects endothelium-de-
pendent responses through the activation of ETA-
endothelin receptor (Zhu et al., 1999) (Fig. 6). It
also has to be noted that, in humans, circulating
and vascular endothelin is increased in arterio-
sclerosis (Lerman et al., 1991, Shimokawa, 1999).

5.2. Hypertension

In hypertension, the balance in the endothelial
production of vasodilating and vasoconstricting
mediators is altered, resulting in an appa-
rent decrease in endothelium-dependent relaxa-
tions (Lüscher, 1990, Lüscher and Vanhoutte,
1986a,b; Lüscher et al., 1987; Tesfamariam and
Halpern, 1988; Boulanger, 1999). In hypertensive
patients and in animal models of hypertension,

Fig. 5. Contraction evoked by endothelin-1 in an isolated
porcine ciliary artery. Endothelin-1 induced in a concen-
tration-dependent manner contraction that where only
partially inhibited in the absence of extracellular calcium.
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endothelium-dependent relaxations are impaired
(Lind et al., 1999; Diedrich et al., 1990). In Dahl-
salt-sensitive rats, the decrease in endothelium-
dependent relaxations is associated with impaired
constitutive NOS activity as well as increased
endothelin-1 plasma levels (d’Uscio et al., 1997;
Barton et al., 1998; Barton et al., 2000). In other
animal models of hypertension (such as sponta-
neous hypertension), the contribution of the
L-arginine NO pathway to endothelium-depen-
dent responses has been reported to be impaired
(Nava et al., 1998). In large arteries from SHR,
endothelium-dependent relaxations are impaired
mainly because of the concomitant augmented
release of endoperoxides activating thromboxane-
endoperoxide receptors (Noll et al., 1997). The
endothelial dysfunction observed in hypertension
is likely to be a consequence of high blood
pressure, but it could facilitate the main
tenance of elevated peripheral resistance at a later
stage in the disease and favour the occurrence of
complications, such as atherosclerosis (Noll et al.,
1997).

5.3. Diabetes

Diabetes mellitus is associated with accelerated
atherosclerosis and an increased prevalence of
cardiovascular disease (Jarrett and Keen, 1979;
Kannel and McGee, 1979). Although the link
between diabetes and cardiovascular disease is not
fully understood, loss of the modulatory role of
the endothelium could be implicated in the
pathogenesis of diabetic vascular complications.
There is substantial evidence that vasodilatation
mediated by endothelium-derived nitric oxide is
impaired in animal models of diabetes (Meraji
et al., 1987; Takiguchi et al., 1988; Tesfamariam
et al., 1989) and in patients with insulin-dependent
and non-insulin-dependent diabetes mellitus
(Johnstone et al., 1993; Calver et al., 1992;
Kawagishi et al., 1999). It has been suggested that
the pathogenesis of diabetic vascular disease
may involve a reduced bioavailability of endothe-
lium-derived NO. Although mechanisms by which
diabetes contributes to endothelial dysfunction are
currently unknown, it is likely that hyperglycemia,

Fig. 6. Bar graph showing endothelium-dependent contractions elicited by oxidized low-density lipoprotein (Ox-LDL) in
isolated quiescent porcine ciliary arteries. Incubation with Ox-LDL evoked changes in vascular tone which were significantly
different from those observed in vessels incubated with either Krebs–Ringer’s solution (control), native low-density
lipoprotein (n-LDL), the ETA-endothelin-receptor antagonist BQ 123, Ox-LDL co-administered with BQ 123, Ox-LDL co-
administered with the protein synthesis inhibitor, cycloheximide, or Ox-LDL incubated in vessels with a non-functional
endothelium (intentionally and mechanical damaged). One-way Kruskal–Wallis (p ¼ 0:0003) followed by Mann–Whitney

test with Bonferoni correction: *: p50:05; **: p50:01 (Zhu et al., 1999).
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the hallmark of diabetes mellitus, may initiate this
abnormality. Hyperglycemia-induced endothelial
dysfunction may result from decreased production
of NO, inactivation of NO by oxygen-derived free
radicals, and/or increased production of endothe-
lium-derived contracting factors, which oppose the
protective activity of NO (Cosentino et al., 1997;
Cosentino and Lüscher, 1998; Stehouwer et al.,
1997).

5.4. Vasospastic syndromes

In variant angina and Raynaud’s disease,
impaired endothelium-dependent responses are
likely to be involved (Kaski et al., 1986; Lüscher
1991; Okumura et al., 1988a,b; Yasue et al., 1986);
indeed, the local levels of endothelin are increased
in both conditions (Lüscher, 1991). In experimen-
tal subarachnoidal hemorrhage of the dog, en-
dothelium-dependent relaxations are reduced,
while endothelium-dependent contractions are
preserved (Kim et al., 1988a,b, 1989). Further-
more, cerebrospinal endothelin levels are increased
and endothelin-antagonists increase vascular dia-
meter in spastic segments. This imbalance in
vascular reactivity may be an important compo-
nent in the pathogenesis of cerebral vasospasm
after subarachnoidal hemorrhage (Sobey and
Faraci, 1998; Zimmermann and Seifert, 1998).

5.5. Ischemia and reperfusion

In the coronary artery of different species,
endothelium-dependent relaxation to most ago-
nists is attenuated after ischemia and reperfusion
(Ku, 1982). The impaired endothelium-dependent
relaxation to aggregating platelets and to platelet-
derived substances persists, whereas, the relaxation
to acetylcholine recovers (Pearson et al., 1990). In
the heart, the injury is associated with alterations
in the redistribution of blood flow (Pelc et al.,
1990). The ischemia/reperfusion injury to the
endothelium appears to be mediated by oxygen-
derived free radicals (Baker et al., 1988; Lamb
et al., 1987; Zweier et al., 1987, 1988). Indeed,
superoxide anions inactivate NO and lead to toxic
products that can activate vascular smooth muscle
cells (Gryglewski et al., 1986; Katusic and
Vanhoutte, 1989; Liu, 1999; Rubanyi and Van-

houtte, 1986; Vanhoutte and Rubanyi, 1988). This
may explain why experimentally superoxide dis-
mutase can prevent the endothelial dysfunction
after ischemia and reperfusion (Mehta et al., 1988;
Liu, 1999).

Furthermore, the inflammatory mediators re-
leased as a consequence of reperfusion also appear
to activate endothelial cells in remote organs that
are not exposed to the initial ischaemic insult. This
distant response to ischaemia and reperfusion can
result in leukocyte-dependent microvascular injury
that is characteristic of the multiple organ
dysfunction syndrome. Adaptational responses to
ischaemia and reperfusion injury have been
demonstrated that allow for protection of briefly
ischaemic tissues against the harmful effects of
subsequent, prolonged ischaemia, a phenomenon
called ischaemic preconditioning. There are two
temporally and mechanistically distinct types of
protection afforded by this adaptational response,
i.e. acute and delayed preconditioning. The factors
(e.g. protein kinase C activation) that initiate the
acute and delayed preconditioning responses
appear to be similar; however, the protective
effects of acute preconditioning are protein-synth-
esis-independent, while the effects of delayed
preconditioning require protein synthesis (Carden
and Granger, 2000).

6. THERAPEUTICAL CONSIDERATIONS

A certain number of drugs have the ability to
modify endothelium-dependent responses.

6.1. Beta-adrenenoreceptor antagonists

Certain b-adrenergic blockers can affect en-
dothelium-dependent responses. In rat aorta, non-
selective b-adrenergic blockers, such as propano-
lol, cause relaxations that are reduced after
endothelium removal (Mostaghim et al., 1986).
In the coronary and femoral artery of the dog the
non-selective b-adrenergic antagonist, carteolol,
does not cause endothelium-dependent relaxation
but selectively augments the abluminal release of
NO to a2-adrenergic activation (Janczewski et al.,
1988). It also causes the intraluminal release of
vasodilator prostaglandins. This effect of carteolol
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is probably different from the direct endothelium-
independent relaxing properties of the drug
apparented to a Ca2+-antagonists like effect
(Brogiolo et al., 2000) (Fig. 7).

6.2. Angiotensin-converting-enzyme inhibitors

Angiotensin-converting-enzyme (ACE) inhibi-
tors do not evoke endothelium-dependent relaxa-
tions (Vanhoutte, 1989) but augment the effects
of bradykinin. Angiotensin-converting enzyme,
which is located at the endothelial cell membrane,
is identical with kinase II, which inactivates
bradykinin (Dzau, 1986; Lindsey et al., 1987).
This explains why angiotensin-converting-enzyme
inhibitors augment endothelium-dependent relaxa-
tion to bradykinin (Vanhoutte, 1989). Even sub-
threshold concentrations of bradykinin can cause
endothelium-dependent relaxations under these
conditions (Vidal and Vanhoutte, 1988; Ruschitz-
ka et al., 1999).

In ciliary arteries, precontracted with serotonin,
bradykinin causes concentration-dependent re-
laxations. Pre-incubation of the arteries with
ACE-inhibitors, enalaprilat or benazepril, for
60minutes significantly enhances the relaxation
to bradykinin in these vessels. Similar observation
could be made in the entire perfused eye. ACE

inhibitors augment endothelium-dependent relaxa-
tion of vasodilatation to bradykinin via B2-
receptors linked to the formation of NO (Meyer
et al., 1995) (Fig. 8).

6.3. AT1-receptor antagonists

Angiotensin II evokes in a concentration-depen-
dent manner contraction of isolated ciliary ar-
teries. Two angiotensin receptors have been
cloned, i.e. the AT1 and the AT2 receptors. In
porcine ciliary arteries, preincubation with valsar-
tan, an AT1-receptor antagonist, reduced the
vasoconstrictor effect of angiotensin-II in a con-
centration-dependent manner. In contrast, the
AT2-receptor ligand, CGP 42112, did not reduce
the response to angiotensin-II. Thus, in porcine
ciliary artery, the AT1 angiotensin receptor is
exclusively responsible for the vasoconstriction
evoked by angiotensin-II on vascular smooth
muscle cells (Meyer et al., 1995) (Fig. 9).

6.4. Ca2+-channel antagonists

In porcine ciliary arteries pre-incubated with
Ca2+-channels antagonists, such as lacidipine or
nifedipine, the maximal contraction but not the
sensitivity to endothelin-1 was reduced (Meyer

Fig. 7. In isolated porcine ciliary artery, potassium chloride induces contractions that are mediated by an influx of
extracellular calcium (Ca2+). Indeed, in a concentration-dependent manner, contractions evoked by KCl were abolished
when decreasing extracellular calcium concentrations (left panel). In the presence of a b-blocker, such as carteolol (1mM),

despite the presence of calcium (0.25, 0.025mM), the contractions were abolished (right panel).
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et al., 1995). In contrast, in bovine retinal arteries
pre-contracted with endothelin-1, calcium antago-
nists were very efficient in relaxing the vessels
(Nyborg et al., 1991). Because Ca2+-antagonists,
such as lacidipine and verapamil, block voltage-
operated channels, these observation suggest that
the development of contractions to endothelin-1

involves primarily the release of Ca2+ from
intracellular storage, while the maintenance of
the contraction evoked by endothelin-1 is essen-
tially dependent on the activity of membrane
voltage-operated Ca2+-channels reperfusion
(Yang et al., 1990a,b). Similar observations could
be reached with magnesium, considered to be a
‘‘physiological’’ a Ca2+-antagonist, in isolated
ciliary arteries (Dettmann et al., 1998). Interest-
ingly enough, it has also been reported that some
b-blockers, at very high concentrations, also
exhibit some kind of Ca2+-antagonist-like proper-
ties (Brogiololo et al., 2000; Hester et al., 1994)
(Fig. 7).

6.5. Platelet-inhibitors

Various platelet inhibitors, such as aspirin,
prevent the formation of thromboxane A2 by
platelets and thereby inhibit platelet-vessel wall
interaction (Moncada and Vane, 1978; Vane,
1971). In addition, the drugs prevent vascular
prostacyclin production, which may be less favor-
able. This property is not shared by newer selective
compounds inhibiting thromboxane A2 synthesis
or receptor (Moncada and Vane, 1978; Bochner
and Lloyd, 1986). In the porcine ciliary artery,

Fig. 8. Effect of the angiotensin converting enzyme (ACE) inhibitor on the endothelium-dependent vasodilatation in the
perfused porcine eye. Bradykinin caused concentration-dependent increase in the ophthalmic flow that was increased in the
presence of the ACE inhibitor (left panel) and decreased in the presence of increasing concentrations of the bradykinin

antagonist Hoe 140 (right panel) (Meyer et al., 1995a).

Fig. 9. Inhibitory effect of the AT1-receptor antagonist
valsartan on the contractions evoked by angiotensin II in
porcine isolated ciliary arteries. In contrast, the AT2-
receptor ligand, CGP 42112, did not reduce the response

to angiotensin II (Meyer et al., 1995a).
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dypiridamole, evoked an endothelium-dependent
relaxation, mediated in part by NO and prostacy-
clin (Meyer et al., 1996).

6.6. Anti-serotonergic drugs

Serotonin evokes contractions via 5HT2-seroto-
nergic receptors on smooth muscle, while endothe-
lial receptors (5HT1-subtype) are linked to the
release of NO. Thus, 5HT2-serotonergic blockers
(e.g. ketanserin, naftidrofuryl) prevent the vaso-
constrictor effect of platelet-derived serotonin, and
often endothelium-dependent relaxations to the
monoamine or aggregating platelets (Prevention of
Atherosclerotic Complications with Ketanserin
Trial Group, 1989; Yang et al., 1991). In isolated
porcine ophthalmic and ciliary artery this mechan-
ism could not be demonstrated (Haefliger et al.,
1993).

7. CONCLUSIONS AND FUTURE
PERSPECTIVES

In conclusion, through the secretion of vasoac-
tive substances, endothelial cells can profoundly
modulate local vascular tone in response to several
local hormones and platelet products. Further-
more, under pathological conditions, such as in
hypertension, diabetes, arteriosclerosis, ischemia,
or vasospasm, endothelial function appears to be
impaired. In the ophthalmic circulation, the
endothelial regulation plays a major role in the
local modulation of blood flow. Furthermore, due
to its strategic location within the vessels, systemic
cardiovascular drugs can easily reach the endothe-
lial regulatory system. Some modern therapeutic
strategies will tend to propose to treat some ocular
vascular disorders or ophthalmic complications of
vascular systemic diseases by restoring or stimu-
lating the endothelial function. Such an approach
has for example already been successfully used in
hypertension where angiotensin-converting en-
zyme inhibitors are used to diminish the inactiva-
tion of bradykinin and thus leading to an increase
in the release of NO. In other words, the
recognition that the vascular endothelium plays a
role in both the physiology and pathophysiology
of vascular regulation opens new potential ther-
apeutic approaches for the care of our patients.
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Impaired endothelium-dependent relaxations in hyper-
tensive resistance arteries involve the cyclooxygenase
pathway. Am. J. Physiol. 258, H445–H451.
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Lüscher, T. F. (1994) Both EtA and EtB receptors mediate
contraction to endothelin-1 in human blood vessels.
Circulation 89, 1203–1208.

Shepherd, J. T. and Vanhoutte, P. M., 1979. The human
cardiovascular system, pp. 1–351. Raven Press, New
York.

Shiba, R., Yanagisawa, M. and Miyauchi, T. et al. (1989)
Elimination of intravenously injected endothelin-1 from
the circulation of the rat. J. Cardiovasc. Pharmacol.
13(Suppl 5), S98–S101.

Shimokawa, H. (1999) Primary endothelial dysfunction: ather-
osclerosis. J. Mol. Cell Cardiol. 31, 23–37.

Shimokawa, H., Lam, J. Y. T., Chesebro, J. H., Bowie, E. J. W.
and Vanhoutte, P. M. (1987) Effects of dietary supple-
mentation with cod-liver oil on endothelium-dependent
responses in porcine coronary arteries. Circulation 76,
898–905.

Shimokawa, H. and Vanhoutte, P. M. (1988) Dietary cod-liver
oil improves endothelium-dependent responses in
hypercholesterolemic and atherosclerotic porcine coron-
ary arteries. Circulation 78, 1421–1430.

Shimokawa, H. and Vanhoutte, P. M. (1989) Impaired
endothelium-dependent relaxation to aggregation plate-
lets and related vasoactive substances in porcine coronary
arteries in hypercholesterolemia and atherosclerosis. Circ.
Res. 64, 900–914.

Sobey, C. G. and Faraci, F. M. (1998) Subarachnoid
haemorrhage: what happens to the cerebral arteries?
Clin. Exp. Pharmacol. Physiol. 25, 867–876.

Stehouwer, C. D., Lambert, J., Donker, A. J. and van Hinsbergh,
V. W. (1997) Endothelial dysfunction and pathogenesis of
diabetic angiopathy. Cardiovasc. Res. 34, 55–68.

Suzuki, N., Matsumoto, H. and Kitada, C. et al. (1989)
Immunoreactive endothelin-1 in plasma detected by a

I. O. Haefliger et al.224



sandwich-type enzyme immunoassay. J. Cardiovasc.
Pharmacol. 13(Suppl 5), S151–S152.

Tabuchi, Y., Nakamaru, M., Rakugi, H. and Nagano, M.
(1989) Ogihara: endothelin enhances adrenergic vasocon-
striction in perfused rat mesenteric arteries. Biochem.
Biophys. Res. Commun. 159, 1304–1308.

Takiguchi, Y., Satoh, N., Hashimoto, H. and Nakashima, M.
(1988) Changes in vascular reactivity in experimental
diabetic rats: comparison with hypothyroid rats. Blood
Vessels 25, 250–260.

Tanner, F. C., Boulanger, C. M. and Lüscher, T. F. (1991)
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